利用稀土 La 对液态 A356 铝合金进行了细化处理, 并在电磁搅拌技术下制备了半固态 A356-La 铝合金浆料, 研究了稀土La 和电磁搅拌对半固态 A356 铝合金初生相形貌的影响, 并用分形维数对其初生相形貌进行了表征.
电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究RESEARCH ON THE MORPHOLOGY AND FRACTAL DIMENSION OF PRIMARY PHASE IN SEMISOLID A356-La ALUMINUM ALLOY BY ELECTROMAGNETIC STIRRING利用稀土 La 对液态 A356 铝合金进行了细化处理, 并在电磁搅拌技术下制备了半固态 A356-La 铝合金浆料, 研究了稀土La 和电磁搅拌对半固态 A356 铝合金初生相形貌的影响, 并用分形维数对其初生相形貌进行了表征. 结果表明, 添加适量的稀土 La 可有效改善半固态 A356 铝合金初生相的形貌, 无论是否经过电磁搅拌, 随着稀土添加量的增加, A356 铝合金的初生相形貌均呈先变好后恶化的演变规律, 当稀土La 的添加量为 0.4% (质量分数)时, 其初生 α 相的形貌和尺寸均达到最佳, 其平均等径圆直径为 88.85 μm, 平均形状因子为 0.78; 当稀土 La 的添加量相同时, 经过电磁搅拌作用的 A356-La 铝合金初生 α 相的平均等积圆直径均比未经过电磁搅拌的更小, 其形状因子则相反, 均比未经过电磁搅拌的更大, 说明经过电磁搅拌的半固态 A356 铝合金初生 α 相比未搅拌过的更细小、圆整, 即经过电磁搅拌的初生 α 相形貌更佳, 如当La含量均为0.4%时, 其平均等径圆直径由88.85 μm 降至84.14 μm, 平均形状因子由0.78升至0.81. 此外, 实际的合金凝固组织具有分形特征, 应用分形几何的原理来描述和分析半固态铝合金中初生相的形貌变化规律甚至初生相形成机理是完全可能的. 且不同工艺参数下所获得的半固态铝合金初生相形貌具有不同的分形维数, 随着半固态初生相由树枝状向颗粒状或球状变化, 其分形维数逐渐变小.
In order to obtain the fine, round and uniform distribution primary α phase in semisolid A356 alloy, the different amount of La was added into the alloy melt, and the melt was poured at 650 ℃ and slightly electromagnetically stirred under the condition of 30 Hz and 15 s, then, it was isothermally held at 590 ℃ for 10 min. The microstructure of the samples was observed by OM and SEM. The influences of La and electromagnetic stirring on morphology of primary α phase in semisolid A356 alloy were studied, and the symbolization of the characteristics of morphology of primary α phase by the fractal dimension was discussed in the paper. The results showed that the morphology of primary α phase in semisolid A356 alloy was effectively improved by the suitable addition of La, no matter whether the semisolid slurry of A356-La alloy was prepared by electromagnetic stirring or not, the morphology of primary α phase showed better at first and then worse as the amounts of La increases, and the morphology and grain size of primary α phase reach the optimal state when the content of La was 0.40% (mass fraction). At the same time, the average equal-area circle diameter of the morphology of primary phase in semisolid A356-La alloy by electromagnetic stirring was finer than that without stirring, on the other hand, the shape factor was bigger than that without stirring. It implies that the primary α phase in semisolid A356-La alloy by electromagnetic stirring was smaller and more rounded than that without stirring, that is, the morphology of primary α phase in semisolid A356-La alloy by electromagnetic stirring was better than that without stirring. In addition, the real microstructure has fractal characteristics, and it was feasible to describe and analyze the change regularity and even the formation mechanism of the morphology of primary α phase in semisolid aluminum alloy by the principle of fractal geometry. The morphology of primary α phase in semisolid A356 alloy by the different process parameters had different fractal dimension. The fractal dimension of the semisolid primary α phase gradually became smaller with its morphology changed from dendritic-like to particle-like or globular-like.
作为值得信赖的合作伙伴和高品质金属合金的半成品供应商,艾荔艾拥有完善的服务体系和专业的团队。在同客户交易的过程中,我们力求根据不同的应用需求将我们的产品做到精益求精。针对当前和未来的市场需求,艾荔艾致力于为客户提供最佳的金属材料解决方案。
AILIAI has been a reliable partner and supplier of sophisticated and high-quality semi-finished products maed of alloys. In dialogue with our customers, we optimise our products to meet the specific application requirements. AILIAI develops the best alloy material solutions for current and future challenges.
获取更多我们供应的合金和服务信息,请致电086-021-67660801或发电子邮件kefu@ailiaigroup.com联系我们,您也可以通过微博,微信,领英,XING,脸书和推特与我们互动。
For more information on the alloys and services that we supply, call us at 086-021-67660801 or email us at kefu@ailiaigroup.com. You can also get in touch on social media, we are constantly active on Weibo, Weixin, LinkedIn, XING, Facebook and Twitter.