采用熔体超温处理技术对新型含 Re和 Ru 的镍基单晶高温合金熔体进行不同温度的超温处理, 利用电子探针系统研究了定向凝固过程中合金元素的溶质分布状态及溶质分配系数随熔体超温处理温度变化的演化规律. 结果表明, 在平界面定向凝固条件下, 随熔体超温处理温度的升高, Al, Ta元素在固液界面前沿液相一侧的分布呈现先增大后减小的趋势, 而 Re, W, Ru, Co 元素则呈现与之相反的规律, Mo, Cr 元素无明显变化; 当熔体从1500 ℃过热到 1700 ℃C 时, 各溶质元素的溶质分配系数趋近于 1; 当进一步提高熔体温度至 1800 ℃时, 各元素溶质分配系数逐渐偏离 1; 而熔体超温处理温度对 Ru, Co, Mo, Cr 元素的溶质分配系数影响较小. 熔体超温处理使合金熔体结构发生变化, 进而影响元素分布, 是导致溶质分配系数发生变化的主要原因.
Solute partition coefficient plays an important role in determining the microstructure and mechanical properties of Ni-based superalloys. Melt superheating treatment can greatly affect the melt structure and redistribution of solute atom in the melt. However, up to date, there are few investigations of the influence of melt superheating treatment on the solute partition coefficient, especially for the new-generation Ni-based single crystal superalloy with additions of Re and Ru. Therefore, in this work, the influence of melt superheating treatment temperature on the solute partition coefficient of a new Ni-based single crystal superalloy with Re and Ru elements under planar solid/liquid (S/L) interface under directional solidification conditions was systematically investigated by using EPMA. It was found that the distribution of solute elements, such as Al, Ta, Ru, Re, W, Co, showed remarkable change in both sides of the S/L interface with increasing melt superheating treatment temperature, but there was little change for the solute elements of Mo and Cr. With increasing the superheating treatment temperature, the concentration of solute elements for Al and Ta increased firstly and then decreased, but it showed an opposite trend for Re, W, Ru and Co. When the melt superheating treatment temperature increased from 1500 ℃ to 1700 ℃, the solute partition coefficients of major solute elements were approaching to 1, however, when the melt superheating temperature further increased, the solute partition coefficients of the major solute elements deviated from 1. Additionally, the change of the solute partition coefficients for Ru, Co, Mo and Cr were small with increasing the melt superheating treatment temperature. The main reasons related to the above changes can be ascribed to that the variation of melt superheating treatment temperature affects the size of the atom clusters in melt, which gives rise to the variation of atomic distribution, and thus leads to the change of solute partition coefficients.
作为值得信赖的合作伙伴和高品质金属合金的半成品供应商,艾荔艾拥有完善的服务体系和专业的团队。在同客户交易的过程中,我们力求根据不同的应用需求将我们的产品做到精益求精。针对当前和未来的市场需求,艾荔艾致力于为客户提供最佳的金属材料解决方案。
AILIAI has been a reliable partner and supplier of sophisticated and high-quality semi-finished products maed of alloys. In dialogue with our customers, we optimise our products to meet the specific application requirements. AILIAI develops the best alloy material solutions for current and future challenges.
获取更多我们供应的合金和服务信息,请致电086-021-67660801或发电子邮件kefu@ailiaigroup.com联系我们,您也可以通过微博,微信,领英和推特与我们互动。
For more information on the alloys and services that we supply, call us at 086-021-67660801 or email us at kefu@ailiaigroup.com. You can also get in touch on social media, we are constantly active on Weibo, Weixin, LinkedIn and Twitter.