Nb-Mo微合金高强钢的强化机理及钢中纳米级碳化物析出行为的研究
发布人:上海艾荔艾合金股份有限公司www.shailiai.cn
更新时间:2016-01-26
采用 SEM, EBSD, HRTEM 和物理化学相分析等技术分别对 Nb (0.1%)和 Nb (0.1%)-Mo (0.19%)微合金低碳热轧钢进行了微观组织形貌、钢中析出相及强化机理的观测和分析.
Nb-Mo微合金高强钢的强化机理及钢中纳米级碳化物析出行为的研究PRECIPITATION BEHAVIOR OF NANOMETER-SIZED CARBIDES IN Nb-Mo MICROALLOYED HIGH STRENGH STEEL AND ITS STRENGTHENING MECHANISM OF THE STEEL采用 SEM, EBSD, HRTEM 和物理化学相分析等技术分别对 Nb (0.1%)和 Nb (0.1%)-Mo (0.19%)微合金低碳热轧钢进行了微观组织形貌、钢中析出相及强化机理的观测和分析. 结果表明, 与 Nb 钢相比, Nb-Mo钢的组织较为细小, 组织中小角度晶界密度也较高, 且Mo的添加使得Nb的析出率升高, 尺寸在10 nm以下的纳米级MC型析出相(Nb, Mo)C含量较高, 这种纳米级析出相(Nb, Mo)C具有较低的熟化速率, 不易粗化, 因此具有较高的沉淀强化增量, 这也是 Nb-Mo 钢强度高于 Nb 钢的主要原因.
Recently, increasing attention has been focused on the high strength low alloy (HSLA) steels mircoalloyed with multiple miroalloying elements, such as Nb-Ti, Nb-V and Ti-Mo, which can form synthetic carbide in steel, such as (Nb, Ti)C, (Nb, V)C and (Ti, Mo)C. Compared with the simplex carbide, such as NbC, TiC, those synthetic carbides with nanometer size exhibiting a superior thermal stability do exert their powerful influence mainly through their precipitation hardening in ferrite. It is reported that the precipitation hardening of approximate 300 MPa which can be obtained in Ti-Mo-bearing steel was developed by JFE steel, attributing to the synthetic (Ti, Mo)C particle precipitated in ferrite. However, as common microalloying elements, Nb and Mo are added synchronously in steel. The strengthening mechanism of Nb-Mo mircoalloyed as-rolled steel and the role of the carbide precipitated in Nb-Mo mircoalloyed as-rolled steel are rarely reported. Therefore, in the present study, the strengthening mechanism, microstructure and the precipitate characteristics of Nb and Nb-Mo microalloyed steels produced by thermo mechanical control process (TMCP) were comparatively investigated by means of SEM, EBSD, HRTEM and physical and chemical phase analysis, in order to systematically study the synergistic effect of Nb-Mo addition on the strength of as-rolled steel. The results shows that the microstructure is finer and the density of low-angle grain boundaries is higher in Nb-Mo microalloyed steel compared with that of in the Nb microalloyed steel. What’s more, the Mo addition could increase the precipitation ratio of Nb, and the amount of the MC-type carbide with nanometer size in Nb-Mo microalloyed steel is evidently larger than that of in Nb microalloyed steel. Those MC-type carbide were identified as synthetic carbide (Nb, Mo)C, exhibiting low coarsening rate than that of NbC precipitated in Nb microalloyed steel, which thus contributed to a higher precipitation hardening. This is main reason of the difference in strength between Nb and Nb-Mo microalloyed steel.
作为值得信赖的合作伙伴和高品质金属合金的半成品供应商,艾荔艾拥有完善的服务体系和专业的团队。在同客户交易的过程中,我们力求根据不同的应用需求将我们的产品做到精益求精。针对当前和未来的市场需求,艾荔艾致力于为客户提供最佳的金属材料解决方案。
AILIAI has been a reliable partner and supplier of sophisticated and high-quality semi-finished products maed of alloys. In dialogue with our customers, we optimise our products to meet the specific application requirements. AILIAI develops the best alloy material solutions for current and future challenges.
获取更多我们供应的合金和服务信息,请致电086-021-67660801或发电子邮件kefu@ailiaigroup.com联系我们,您也可以通过微博,微信,领英和推特与我们互动。
For more information on the alloys and services that we supply, call us at 086-021-67660801 or email us at kefu@ailiaigroup.com. You can also get in touch on social media, we are constantly active on Weibo, Weixin, LinkedIn and Twitter.