新闻资讯
氨基酸对7B50铝合金在1 mol/L NaCl+0.1 mol/L HCl溶液中缓蚀性能的影响
发布人:上海艾荔艾金属材料有限公司www.shailiai.com
更新时间:2015-12-03
采用静态失重法与电化学阻抗谱评价4种氨基酸对7B50超高强度铝合金在1 mol/L NaCl+0.1 mol/L HCl溶液中的缓蚀行为,并通过腐蚀形貌表征氨基酸的缓蚀机理。
氨基酸对7B50铝合金在1 mol/L NaCl+0.1 mol/L HCl溶液中缓蚀性能的影响Effect of inhibition properties of several amino acids oncorrosion property of 7B50 aluminium alloy in1 mol/L NaCl+0.1 mol/L HCl
采用静态失重法与电化学阻抗谱评价4种氨基酸对7B50超高强度铝合金在1 mol/L NaCl+0.1 mol/L HCl溶液中的缓蚀行为,并通过腐蚀形貌表征氨基酸的缓蚀机理。结果表明:氨基酸浓度越高、温度越低,氨基酸对铝合金的缓蚀效率就越高。添加氨基酸后,溶液中铝合金的表观活化能均增大,其中,半胱氨酸(Cys)和蛋氨酸(Met)的表观活化能最高,这归因于—SH或—SCH3基团对铝合金表面优良的吸附作用。在4种氨基酸中,0.05 mol/L半胱氨酸(Cys)中含—SH基团的缓蚀效率最高,室温下高达94.7%;Met的次之,主要是由于—SCH3的空间位阻效应所致;苯丙氨酸(Phe)的缓蚀性能较差;低浓度的组氨酸(His)缓蚀能力相对不佳,而高浓度的His在较高温下仍保持着较高的缓蚀效率,这说明His的缓蚀效率受温度的影响较小。因此,His相应的表观活化能也较低。浸泡实验后的金相结果表明:添加氨基酸后会不同程度地抑制铝合金的晶间腐蚀和点蚀。
The inhibition behavior of four amino acids for 7B50 aluminium alloy was investigated using the mass loss measurement and electrochemical impedance spectroscopy technique. The corrosion mechanism of amino acid was characterized by corrosion morphologies. The results show that the inhibition efficiency increases with the increase of concentration and the decrease of temperature. The apparent activation energies of aluminium alloys in the presence of amino acids are larger than that of the sample immersed in the blank solution. The apparent activation energies of cysteine(Cys) and methionine (Met) are highest due to the excellent adsorption ability of —SH or —SCH3 groups on the surface of aluminium alloy. The inhibition efficiency of 0.05 mol/L Cys at low temperature is best among these four studied amino acids, e.g., the inhibition efficiency of Cys is 94.7% at room temperature. Met is also S–containing amino acids, but its inhibition efficiency is lower than that of Cys due to the steric hindrance effect. In addition, relatively lower inhibition efficiency is achieved for phenylalanine (Phe). Histidine (His) with low concentration has very bad inhibition performance, however, at higher temperatures, relatively good corrosion inhibition capability of His with high concentration is shown up gradually. The effect of temperature on the inhibition efficiency of Histidine (His) is little. Consequently, the apparent activation energy of Histidine (His) is lower than other amino acids. The corrosion morphologies show that the intercrystalline corrosion and pitting corrosion of aluminium alloys are inhibited in the presence of amino acids.
获取更多我们供应的合金和服务信息,请致电086-021-67660801或发电子邮件kefu@ailiaigroup.com联系我们,您也可以通过微博和微信和我们互动。
For more information on the alloys and services that we supply, call us at 086-021-67660801 or email us at kefu@ailiaigroup.com. You can also get in touch on social media, we are constantly active on Weibo and Weixin.