新闻资讯
2A97 Al-Cu-Li合金在铝酸盐和磷酸盐电解液中等离子电解氧化膜的性能
2A97 Al-Cu-Li合金在铝酸盐和磷酸盐电解液中等离子电解氧化膜的性能Properties of plasma electrolytic oxidation coatings formed on 2A97 Al-Cu-Li alloy using aluminate and phosphate electrolytes
采用交流双脉冲电流制度对2A97 Al-Cu-Li合金分别在铝酸盐和磷酸盐电解液中进行等离子电解氧化处理的研究,分析所得膜层的微观结构和相组成,并采用电化学极化曲线和摩擦试验对两种电解液中所得膜层的耐腐蚀性能和耐磨性能进行评价。结果表明:在两种电解液中所得膜层表面存在大量饼状结构,膜层由内外两层构成,两层之间分布大量微孔,膜层的相组成主要为α、γ、δ-Al2O3,铝酸盐电解液中所得膜层有较多的α-Al2O3。磷酸盐电解液中所得膜层的耐腐蚀性高于相应的铝酸盐中所得膜层的耐腐蚀性。磷酸盐电解液中所得膜层具有较低的摩擦因数,与膜层中含有的P元素有关。然而,铝酸盐电解液中所得膜层具有更高的耐磨性,是因为铝酸盐膜层中含有更多硬度较高的α-Al2O3。
The plasma electrolytic oxidation of 2A97 Al-Cu-Li alloy was carried out by pulsed bipolar current regime, in aluminate and phosphate electrolytes, respectively. The microstructure and phase composition of the produced coatings were analyzed by SEM and XRD, and the corrosion and wear properties of the coatings from the two electrolytes were evaluated by electrochemical polarization curves and dry sliding wear tests. The results show that pancake structures dominate the surface of the coatings from both electrolytes, and the coatings consist of an inner and an outer layer in their cross sections, and there are large amount of big pores between the two layers. The main phase compositions of the coatings are α, γ, δ-Al2O3, however, higher amount of α-Al2O3 is found in the coating from aluminate electrolyte. The coating from phosphate electrolyte exhibits higher corrosion resistance than a similar coating from aluminate electrolyte. The coating from the phosphate electrolyte shows lower coefficient of friction, possibly due to the incorporation of P in the coating. However, the coating from the aluminate electrolyte has higher wear resistance because more α-Al2O3 is found in the coating from aluminate electrolyte.
全文下载:http://pan.baidu.com/s/1sj4zlNn